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Abstract. We consider the Harper model which describes two-dimensional Bloch electrons in
a magnetic field. For irrational flux through the unit-cell the corresponding energy spectrum
is known to be a Cantor set with multifractal properties. In order to relate the maximal and
minimal fractal dimension of the spectrum of Harper’s equation to the irrational number involved,
we combine a refined version of the Hofstadter rules with results from semiclassical analysis
and tunnelling in phase space. For quadratic irrationalsω with continued fraction expansion
ω = [0; n] the maximal fractal dimension exhibits oscillatory behaviour as a function ofn, which
can be explained by the structure of the renormalization flow. The asymptotic behaviour of the
minimal fractal dimension is given byαmin ∼ constant lnn/n. As the generalized dimensions
can be related to the anomalous diffusion exponents of an initially localized wavepacket, our
results imply that the time evolution of high order moments〈rq 〉, q → ∞ is sensible to the
parity of n.

0. Introduction

Originally conceived to describe Bloch electrons in a magnetic field [1], Harper’s equation

φn+1 + φn−1 + 2 cos(2πωn + ν)φn = Eφn (1)

has become a subject of its own right. The parameterω is the ratio between the magnetic flux
per unit cell and the flux quantum,φn is related to the wavefunction of the Bloch electron and
ν is a phase. Harper-like models are of great interest in a wide variety of physical contexts
(integer quantum Hall effect [2], superconducting networks [3], electrons in superlattices [4])
and have given rise to strong interplay between physics and mathematics, as e.g. in the fields
of semiclassics [5], non commutative geometry [6], and, quite recently, quantum groups [7].
Experimental investigations on superconducting networks permit a direct observation of the
ground state energy as a function of the magnetic flux [3]. Furthermore, the resolution of
the fine structure of Hofstadter’s famous butterfly have been made possible by measuring
the magnetoresistance oscillations in superlattices [4, 8].

During recent years there has been great interest in the generalized (Rényi) dimensions
[9] of the spectral measure of this equation and similar quasiperiodic tight-binding
Hamiltonians [10–17]. For the Harper equation it was conjectured that the fractal dimension
Dq=0 is exactly 1

2 for typical irrational numbers [15, 18]. Due to the Thouless property
[19–21], however, there is a simple argument providing strong evidence forD0 being
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118 A Rüdinger and F Piéchon

strictly smaller than1
2†. Recently a statistical theory has been presented to explain the

numerically observed behaviour ofD0 as a function of the irrational numberω = [0; n]
[22]. Until now there is no detailed investigation how the generalized dimensionsDq for
a genericq depend on the incommensurabilityω. However, the generalized dimensions
play an important role for explaining the anomalous diffusion properties of wavepackets
found in incommensurable models. Quite recently, the link betweenDq and the anomalous
diffusion 〈rq〉 ∼ tqσq has been made explicit by the relationσq = D1−q , which has been
verified numerically [23].

In this paper we deal with the problem of the maximal and minimal fractal dimensions
αmin = D+∞ andαmax = D−∞. This is intended to be a first step to general values ofq.
While αmin (as D0) exhibits a monotonic behaviour as a function ofn, we find thatαmax

shows strongly pronounced even-odd oscillations that can be explained by a refinement of
the Hofstadter rules [26]. Similar behaviour ofαmin and αmax has been found for a tight-
binding Hamiltonian associated with substitution sequences using the trace map approach
[24, 25].

The paper is organized as follows. We begin by reviewing the Hofstadter rules (1), then
we consider the multifractal properties of Harper’s equation for the case of the golden and
silver mean (2) and finally pass to more general quadratic irrational numbers (3), where the
minimal and maximal fractal dimensions of the related spectrum will be discussed in detail.

1. Hofstadter rules

The starting point of our considerations is the hierarchical clustering of the spectrum of
Harper’s equation (1). By inspecting the band structure of this equation as a function ofω,
Hofstadter [26] noticed that for a givenω it consists of three parts, one central cluster (S)
and two side clusters (R) that are closely related to the full spectra of Harper’s equation
with renormalized values ofω, namelyR(ω) andS(ω) with

R(ω) =


{

1

ω

}
if 0 < ω < 1

2{
1

1 − ω

}
if 1

2 < ω < 1

(2)

and

S(ω) =


{

ω

1 − 2ω

}
if 0 < ω < 1

2{
1 − ω

2ω − 1

}
if 1

2 < ω < 1

(3)

where{·} denotes the fractional part (for an illustration see [26, 18].
These clustering rules, denoted as Hostadter rules, have been derived afterwards by

different methods [18, 28].
Until now, however, for practical calculations, it has always been assumed that the side

clusters and the central cluster are simply rescaled versions of the full spectrum for the
renormalizedω. Furthermore only the case of the golden and silver mean (ωgold = [0; 1],

† Using, however, the thermodynamic formalism for the multifractal properties
∑N

i=1 1
(1−q)Dq

j ∼ Nq [9], the

Thouless property [19, 21, 20] for the scaling of the total bandwidth
∑N

i=1 1j ∼ N−1 gives immediatelyD−1 = 1
2 ,

and, therefore,D0 < D−1 = 1
2 , providedDq is strictly monotonically decreasing, that is the generic case for a

multifractal.
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ωsilver = [0; 2]) has been considered. These particular values ofω are fixed points of both
maps,R andS, and therefore self-consistent equations for the fractal dimensionD0 can be
obtained easily [18].

In order to refine the assumption that the side and central clusters are merely
homogeneously rescaled versions of the full spectrum for the renormalizedω, we rewrite
Hofstadter’s clustering rules in a more quantitative way. Consider the spectrum of a
rational approximantω = p/q with q bands. The partition of these bands on the
lower side cluster, the central cluster and the upper side cluster is given according to
denω = q = denR(ω) + denS(ω) + denR(ω), where ‘den’ denotes the denominator.
Therefore we can write theq energy valuesEi (upper or lower band edge, for largeq,
in which we are interested, the bandwidths go to zero, so there is no difference) in the
following form [27]:

Ei(ω) =



f −
ω (Ei(R(ω))) for i = 1, . . . , denR(ω)

f 0
ω(Ei−denR(ω)(S(ω))) for i = denR(ω) + 1, . . . , denR(ω)

+ denS(ω)

f +
ω (Ei−denR(ω)−denS(ω)(R(ω))) for i = denR(ω) + denS(ω)

+1, . . . , q.

(4)

The functionsf ±,0
ω (E) are the fingerprints of Hofstadter’s rules and are essential for

calculating the fractal dimensions of the spectrum for a givenω. The irrational number
ω can be developped in a continued fraction. Its truncation at thekth level yields the
approximant ofω of generationk. An essential point is thatf ±,0

ω (E) only depend weakly
on the generation of the approximant ofω.

For a quasiperiodic tight-binding model where the Hofstadter rules also apply, the
functions f ±,0(E) have been calculated in a linear approximation by means of a
renormalization approach for the case of the golden mean. Sinceωgold is invariant underS
andR, the Hofstadter rules close up after the first step, leading to a self-consistent equation
for the fractal dimensions [16].

A generic quadratic irrational number is not invariant underR and S, but successive
applications ofR and/orS involve a finite number of different irrational numbers. This
can be seen, if the renormalization equations forω are rewritten for the continued fraction
expansionω = [0; a1, a2, . . .]:

R(ω) =
{

[0; a2, a3, a4, . . .] if a1 > 1

[0; a3, a4, a5, . . .] if a1 = 1
(5)

and

S(ω) =


[0; a1 − 2, a2, a3, . . .] if a1 > 2

[0; a3, a4, a5, . . .] if a1 = 2

[0; a2 − 1, a3, a4, . . .] if a1 = 1, a2 > 1

[0; a4, a5, a6, . . .] if a1 = 1, a2 = 1.

(6)

Since quadratic numbers have periodic continued fraction expansions, only a finite
number of different irrationals will occur by applying iterativelyR andS to ω. Thus, once
the functionsfω(E) are known for allω involved in the renormalization flow of the initial
ω, the multifractal properties of the spectrum are determined.

We will restrict ourselves to quadratic numbers of the formω = [0; n]. Examples of
the renormalization flow are given in the following schematic representation forn = 3, 4:
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Figure 1. Cycles occurring in the discrete renormalization diagram forω = [0; n].

The structure of these diagrams depends on the parity ofn. For n odd, there aren
irrational numbers involved andn + 1 cycles occur,n being of the formSjR and one of
the form Sn. For n even, there aren/2 irrationals andn/2 cycles occur,n/2 − 1 of the
form SjR and one of the formSn/2.

Both of these cycles only leave invariant the exact irrational numberω. Applied to an
approximant ofω of generationk, an approximant ofω, but of lower generationk′ < k is
obtained, as is immediately obvious by inspecting (5) and (6). Thus, we can assign to each
cycle a ‘generation loss’d := k − k′ (cf figure 1).

2. Golden and silver number

For the sake of simplicity, we will begin by dealing with the problem for the case
ω = ωgold,silver, which are fixed points of the Hofstadter rules. The mappingf ±,0

ω (E) has
two different fixed points, denoted asR and S in figure 2, which correspond to the edges
respectively to the centre of the spectrum. Assuming in a first approximation that the scaling
properties of the spectrum are well described by the contraction factors at the centres and at
the edges,zS = − df 0

dE
|centre andzR = df ±

dE
|edges, we find that afterk steps of renormalization,

the bandwidths scale with1 ∼ zk while the system size scales withN ∼ ω̃−k·d , whereω̃ is
the algebraically conjugate toω (ω̃ = 1

2(n+√
n2 + 4) for ω = [0; n] = 1

2(−n+√
n2 + 4)).

With 1 ∼ N−1/α we obtain the two local scaling exponents at the edges and the centre
of the band:

αS = −d(S) ln ω̃

ln zS

(7)

and

αR = −d(R) ln ω̃

ln zR

(8)

whered(S) andd(R) are the generation losses of the cyclesR andS.
Furthermore, within this approximation a self-consistent equation forτ(q) = (q −1)Dq ,

the Legendre transform off (α), can be given directly:

2ωd(R)q

zτ
R

+ ωd(S)q

zτ
S

= 1 ω = ωgold, ωsilver. (9)

For the case of the golden number, this equation has recently been used to derive the
multifractal properties of a tight-binding Hamiltonian associated with the Fibonacci sequence
in the limit of strong modulation [16]. Despite of being a good first approximation, the
correspondingf (α) has two serious drawbacks: First,f (αmin) or f (αmax) (depending on
the parameter) does not vanish in contradiction to numerical simulations and indications
from the trace map approach [12]. This problem is due to the oversimplification off ±,0 by
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Figure 2. Schematic representation off ±,0(E). The pointsR and S are the fixed points of
f ±,0(E). The pointR± corresponds to the two-orbitE → −E → E.

three linear pieces, yielding an artificial degeneration of the widths of the bands (2n bands
of ω̃n ones have the same widths), which leads tof (αR) 6= 0.

Second, in this approach the extremal scaling properties are found at the band edges or
at the centre of the spectrum. This is, however, by far not the general case. It is true for
ωgold for both the Harper model and the quasiperiodic Hamiltonian mentioned above, but
neither forωsilver, nor for higher irrational numbersω = [0; n], n > 3.

In order to construct an approach eliminating these two problems, we consider the
mapping of the spectrum by the renormalization flow as a discrete dynamical system. For
ωgold andωsilver the spectral measure is given by the invariant measure of the mapf ±,0

ω (E).
The band edges and the band centre are attracting fixed points off ±,0

ω (E), thus giving rise
to nontrivial scaling behaviour, as we have seen above. To get accurate approximations
of the f (α)-curves, however, we have to take into account higher periodic orbits of the
underlying dynamical systems. The simplest approximation is to include the orbitR+R− of
period two. The energies of the two (symmetric) fixed points are given byf ±(E) = −E.
Therefore we find for the corresponding scaling factor

αR+R− = − d(R+R−) ln ω̃

ln zR+ + ln zR−
= −d(R) ln ω̃

ln zR±
(10)

wherezR± is the local contraction factor at the fixed points of order two:

zR± = df ±,0 (E)

dE

∣∣∣∣
E=−f ±(E)

. (11)

Taking into account the three contraction factorszR, zS, zR± (denoted as 3z-model in the
following) we arrive at the following self-consistent equation forτ(q):

ωd(R)q

zτ
R

+ ωd(R)q

zτ
R±

+ ωd(S)q

zτ
S

= 1 ω = ωgold, ωsilver. (12)

If zR± equalszR equation (12) reduces to (9).
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Figure 3. One quarter of the Hofstadter’s butterfly. The band edgesE0(ω), E1+(ω) andE1−(ω)

are depicted with lines.

The minimal and maximal dimensions for the 3z-model are given byαmin(max) =
min(max){αR, αS, αR±}. By performing the Legendre transformation of (12) we find the
correct behaviourf (αmin,max) = 0. While for the golden numberαmax = αS > αR± >

αR = αmin, i.e. the maximal scaling exponent occurs at the centre of the spectrum, for the
silver number the maximal dimension is given byαmax = αR± > αS > αR = αmin, i.e. the
bands of maximal widths are not at the centre of the spectrum, but at the energy given by
f ±(E) = −E. Therefore a linear approximation off ±,0

ω (E) (i.e. two scaling factors, one
for the central, and one for the side bands) is not sufficent for explainingαmin and αmax,
even in the case ofωsilver.

The approximativef (α)-curves calculated from equation (12) are compared in figure 4
with those obtained by the usual multifractal formalism [9]. Despite of the simplicity of our
model there is a good agreement between the curves. Including linearization around further
periodic orbits of the nonlinear mapf ±,0(E) would yield further quantitative improvement.
We consider the 3z-model as the simplest qualitatively correct approximation.

Let us note that the Thouless propertyD−1 = 1
2 (i.e. τ(−1) = −1) yields one linear

equation which the three contraction factors have to fulfill:
zR

ωd(R)
+ zR±

ωd(R)
+ zS

ωd(S)
= 1 ω = ωgold, ωsilver. (13)

Thus, by use of this relation, the calculation of the scaling behaviour at the band-edgeszR

and at the centre of the bandzS would enable us to obtain the missing contraction factor
zR± .

3. Higher quadratic irrational numbers

Hitherto we have been considering the case of the fixed points of the Hofstadter rules,
where the renormalization always yields the same functionf

±,0
R(ω)(E) = f

±,0
S(ω)(E) = f ±,0

ω (E)

that can be considered as a dynamical system. We have shown that taking into account
not only the fixed points of this dynamical system, but also a periodic orbit of length two,
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Figure 4. The multifractal spectrumf (α) for the Harper model forωgold (narrow curve) and
ωsilver (large curve) compared to the 3z-model. Thef (α)-curves obtained from diagonalization
and the thermodynamic formalism are drawn with symbols, thef (α) obtained from Legendre-
Transformation of (12) are depicted with lines (z

gold
R = 0.103, z

gold
R± = 0.164, z

gold
S = 0.0718;

zsilver
R = 0.118, zsilver

R± = 0.248, zsilver
S = 0.020).

satisfactoryf (α)-curves can be obtained. Now we generalize this approach to the irrational
numbers [0; n] that are not fixed points of the Hofstadter rules but give rise to a nontrivial
cycle structure that has been shown above.

In this case we have to deal not only with one functionf ±,0
ω (E) but with a whole

set of function{f ±,0
ωi

(E)}, where theωi are the irrational numbers occurring in the flow
diagram ofω. In order to calculate the scaling properties of the spectrum, we have to
consider the cycles of the flow diagram. To each cycle there is one effectivef

±,0
eff (E) that

results from concatenating the corresponding mapsf ±,0
ωi

(E) for the ωi occurring in this
cycle. For example, the effective map of the cycleS2R in the case ofω = [0; 3] is given
by f ±

eff = f ±
[0;2,3]

◦f 0
[0;1,3]

◦f 0
[0;3]

(consider equation (4) and the flow diagram). Each of these
effective maps can be considered as a dynamical system with fixed points and periodic
orbits of different lengths.

Now two natural questions arise: Which cycle of the renormalization flow does lead to
the minimal (respectively maximal) local scaling exponent? Which fixed point or periodic
orbit of the dynamical system corresponding to this cycle does yield the extremal scaling
exponent? In a first step, these two questions can be addressed numerically by determinating
the index of the band of maximal (respectively minimal) width and following its way under
the renormalization flow.

We find that the the minimal scaling exponent forω = [0; n] occurs for the cycleR
(theseω are fixed points ofR), i.e. the smallest bands occur at the edges of the spectrum.
More interestingly, the maximal scaling exponent occurs for the cycleSn−1R (n odd)
respectively forS

n
2 −1R (n even). The lengths and the structure of these cycles show a

striking even-odd effect which is a direct result of the Hofstadter rules. Furthermore, for
n odd the maximal scaling exponent is given by the fixed point of the effective dynamical
system, while for even values ofn the asymmetric orbit of length two yields the maximal
scaling exponent.
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For the minimal exponent we find forω = [0; n]:

αmin = − ln ω̃

ln zR([0; n])
(14)

and for the maximal exponent we obtain

αmax = − 2 ln ω̃

ln |f ±
eff

′
(E∗

1)| if n odd (15)

αmax = − ln ω̃

ln |f ±
eff

′
(E∗

2)| if n even (16)

whereE∗
1 (E∗

2) is the energy of the fixed point (energy of the orbit of period two) of the
effective mapf ±

eff(E). Replacing the effective mapf ±
eff(E) by the individual maps, we find

αmax = − 2 ln ω̃∑n
i=1,i 6=2 ln zS([0; i, n]) + ln zR([0; 2, n])

if n odd (17)

αmax = − ln ω̃∑n
i=4,ievenln zS([0; i, n]) + ln zR±([0; 2, n])

if n even. (18)

Inspecting these two equations one is lead to the assumption thatαmax as a function of
ω = [0; n] should be sensible to the parity ofn, while αmin is expected to show a monotonic
behaviour as a function ofn. This is indeed the case, as shown in figure 6. For a more
quantitative discussion of our approximation, however, the behaviour ofzR, zR± andzS as
a function ofω is required. For limiting cases, asω → 0 or ω → 1

2, the contraction factor
zS can be obtained by semiclassical analysis and by considering tunnelling in phase space
[28, 29, 5, 30–32], if one makes the further assumption thatf 0

ω(E) is nearly linear, so that
zS can be written as ratio of band edges:zS(ω) = E1−(ω)/E0(S(ω)). For ω → 0 zS(ω) is
therefore given by the ratio of two Landau levels and with the results of [5] we find:

zS(ω) = 1 − πω + πω2 +
(

2π − π2 + π3

24

)
ω3 + O(ω4) (ω → 0). (19)

For ω → 1
2 tunnelling has to be taken into account for determiningE1−(ω) and we find

− 1

ln zS(ω)
' bS(

1
2 − ω) + cS(

1
2 − ω)2 + dS(

1
2 − ω)2 ln( 1

2 − ω) (ω → 1
2) (20)

wherebS is given analytically bybS = π(
∫ π/2

0 ln(cosk + √
1 + cos2 k) dk)−1 ≈ 3.429 815

andcS anddS are fit parameters (cf appendix). Although equations (19) and (20) are only
expansions nearω = 0 andω = 1

2, they describezS(ω) over the whole range 0< ω < 1
2

amazingly well, if one takes equation (19) for 0< ω < 0.25 and equation (20) for
0.25 < ω < 0.5 (cf figure 5). In principle, a similar analysis can be performed for the
mean slopezR = (E0(ω) − E1+(ω))/(2E0(R(ω))). As the linear approximation forf ±(E)

assumed in this relation is a rather crude one for generalω, the values ofzR and zR± can
deviate considerably fromzR. This, however, is not the case forω → 0, wherezR andzR±
are well approximated byzR that is given in this regime by

− 1

ln zR(ω)
= bRω + cRω2 + dRω2 ln ω (ω → 0) (21)

wherebR = 2π(
∫ 2π

0 ln(2− cosk +
√

(2 − cosk)2 − 1) dk)−1 ≈ 0.857 454 andcR ≈ 1.5 and
dR ≈ 0.37 again are fit parameters.
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Figure 5. The contraction factorzS(ω) = E1−(ω)/E0(ω) compared to the results from
semiclassical analysis (equation (19) for 0< ω < 0.25 and equation (20) for 0.25 < ω < 0.5
(bS = 3.429 815,cS = 9.6, dS = 5.2)). Note thatzS(ω) is remarkably smooth compared to
E1−(ω) andE0(ω) (figure 3).

As αmin is determined byzR[0; n] ≈ zR[0; n] (as [0; n] → 0 for n → ∞), we insert
equation (21) into (14) and obtain

αmin ' (bRω + cRω2 + dRω2 ln ω) ln ω̃ (22)

where ω = 1
2(

√
n2 + 4 − n) and ω̃ = 1

2(n + √
n2 + 4). Therefore, asymptotically

αmin ∼ bR ln n/n (n → ∞) and limn→∞ αmin = 0.
For αmax the valueszR and zR± for ω near to 1

2 are needed. As they are not directly
available in our approach, we take approximatelyzR(ω) = zR(ω) and zR± = 1.4zR(ω),
wherezR(ω) is given by equation (21). This approximation is intended to give the qualitative
behaviour forαmax.

In figure 6 the predictions forαmin andαmax for 3 6 n 6 10 are compared with the cor-
responding values obtained by diagonalization. Forαmin andn > 5 there is good agreement
between prediction and simulation, while forn < 5 the predicted value ofαmin is too high,
reflecting the fact thatzR < zR. For αmax we find qualitatively the even-odd oscillations,
but of course, due to the problems mentioned above, we cannot hope to achieve quantitative
agreement. In particular an open question is the behaviour ofαmax for n → ∞. For the
moment, we can only state, that if lnzR(ω) and lnzR±(ω) is bounded forω → 1

2, thenαmax

does not reach the value 1 forn → ∞.

4. Conclusion

We have used a refined version of Hofstadter rules together with results from semiclassical
analysis to link the maximal and minimal fractal dimension of the spectrum of the Harper
equation to the continued-fraction expansion of the irrational number characterizing the flux
per unit-cell. We have shown that the oscillatory behaviour ofαmax for ω = [0; n] as a
function ofn can be qualitatively explained by the discrete flow diagrams of the Hofstadter
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Figure 6. The fractal dimensionsD−∞ = αmax andD∞ = αmin for ω = [0; n] as a function of
n. Results of diagonalization are depicted with points, the lines refer to to equations (22) and
(18)

rules. Forαmin an explicit expression has been given which describes fairly well the data
obtained by diagonalization. We conjecture that the result forαmax can be generalized to
quadratic numbers of the continued fraction expansionω = [0; n1, n2, · · · , np]. Take for
exampleω = [0; n1n2]: In this case the renormlization flow diagram contains1

2(n1 + n2)

different irrational numbers, if bothn1 and n2 are even. In all the other cases, there are
n1+n2 different irrational numbers. Thus, for even values ofn1 the cycle structure depends
on the parity ofn2, while this is not the case forn1 odd. Hence, for fixed even values of
n1 we expect even-odd oscillations ofαmax as function ofn2, while for odd values ofn1

no such oscillations are expected.
Finally we note that the applicability of the Hofstadter rules to a wide class of

quasiperiodic models suggests that our method could be useful for other models than the
one we have considered here.

Appendix

This appendix is intended to provide the calculations forzS and zR in the semiclassic
approximation using methods and results described in [29, 5, 30–32].

Equation (19) can be obtained directly by inserting the semiclassical expansion of the
Landau levels up to order three [5] into

zS(ω) = E1−(ω)

E0(
ω

1−2ω
)

(ω → 0). (23)

For ω → 1
2 the contraction factorzS is given by

zS(ω) = E1−(ω)

E0(4( 1
2ω))

(ω → 1
2). (24)

While the denominator corresponds to Landau levels nearω = 0 and the already mentioned
semiclassical expansion can be used, the numerator involves the calculation ofE1−(ω) for
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Figure 7. The broadening of the Dirac level atE = 0, ω = 1
2 compared to the result from

tunnelling in phase space−1/ ln E1−(ω) ∼ 2π( 1
2 − ω)/| Im S|, where the imaginary part of the

action is given by| Im S| = ∫ π/2
−π/2 ln(cosk + √

1 + cos2 k) dk ≈ 1.831 931. For1
2 − ω < 0.013

the broadening of Dirac levels cannot be resolved numerically.

ω → 1
2. Since forω = 1

2 the effective HamiltonianH = ±2
√

cos2 k1 + cos2 k2 has the
form of a Dirac operator at the four critical points(±π

2 , ±π
2 ) (independent signs) [5], we

are left with the calculation of tunnelling between Dirac levels.
Although the usual formula for level splitting due to tunnelling

1E ∼ constant× h̄ exp

(
−| Im S|

h̄

)
(25)

where S is the action integral between degenerate minima, ¯h is Planck’s constant and
the proportional constant is related to the classical frequency, was originally derived for
tunnelling between parabolic minima [33], we tentatively use it for our case, where the
minima are conical. With ¯h = 2π( 1

2 − ω) [5] we obtain

E1−(ω) ∼ ( 1
2 − ω) exp

(
− | Im S|

2π( 1
2 − ω)

)
(26)

where the action integral has to be calculated between two adjacent minima in phase space.
The (complex) orbits are given byH = 0, i.e. cos2 k1 + cos2 k2 = 0 and therefore

S =
∫ π/2

−π/2
arccos(±i cosk1) dk1 (27)

| Im S| = 2
∫ π/2

0
ln(cosk1 +

√
1 + cos2 k1) dk1 ≈ 1.831 931. (28)

Formula (26) with (28) inserted is compared to numerical results from diagonalization in
figure 7. We note that the fact of the action being purely imaginary shows the absense of
braiding of the Dirac levels. To calculatezS(ω → 1

2) we insert (26) together with

E0(4( 1
2 − ω)) ∼ 4 − 8π( 1

2 − ω) + O(( 1
2 − ω)2) (29)
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into (24) and obtain (20). The parameterscS ≈ 9.6 anddS ≈ 5.2 are determined by fitting
to the numerical data.

The calculations forzR(ω → 0) are analogous, but only Landau levels have to be
considered.
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